Designing communicating colonies of biomimetic microcapsules.

نویسندگان

  • German V Kolmakov
  • Victor V Yashin
  • Steven P Levitan
  • Anna C Balazs
چکیده

Using computational modeling, we design colonies of biomimetic microcapsules that exploit chemical mechanisms to communicate and alter their local environment. As a result, these synthetic objects can self-organize into various autonomously moving structures and exhibit ant-like tracking behavior. In the simulations, signaling microcapsules release agonist particles, whereas target microcapsules release antagonist particles and the permeabilities of both capsule types depend on the local particle concentration in the surrounding solution. Additionally, the released nanoscopic particles can bind to the underlying substrate and thereby create adhesion gradients that propel the microcapsules to move. Hydrodynamic interactions and the feedback mechanism provided by the dissolved particles are both necessary to achieve the collective dynamics exhibited by these colonies. Our model provides a platform for integrating both the spatial and temporal behavior of assemblies of "artificial cells," and allows us to design a rich variety of structures capable of exhibiting complex, cooperative behavior. Due to the cell-like attributes of polymeric microcapsules and polymersomes, material systems are available for realizing our predictions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanoassembly of biocompatible microcapsules for urease encapsulation and their use as biomimetic reactors.

Biocompatible polypeptide capsules with high enzyme loading and activity prepared by templating mesoporous silica spheres were used as biomimetic reactors for performing CaCO3 synthesis exclusively inside the capsule interior via urease-catalyzed urea hydrolysis.

متن کامل

Synthetic quorum sensing in model microcapsule colonies.

Biological quorum sensing refers to the ability of cells to gauge their population density and collectively initiate a new behavior once a critical density is reached. Designing synthetic materials systems that exhibit quorum sensing-like behavior could enable the fabrication of devices with both self-recognition and self-regulating functionality. Herein, we develop models for a colony of synth...

متن کامل

Controlling the strontium-doping in calcium phosphate microcapsules through yeast-regulated biomimetic mineralization

Yeast cells have controllable biosorption on metallic ions during metabolism. However, few studies were dedicated to using yeast-regulated biomimetic mineralization process to control the strontium-doped positions in calcium phosphate microcapsules. In this study, the yeast cells were allowed to pre-adsorb strontium ions metabolically and then served as sacrificing template for the precipitatio...

متن کامل

Polymeric capsule-cushioned leukocyte cell membrane vesicles as a biomimetic delivery platform.

We report a biomimetic delivery of microsized capsule-cushioned leukocyte membrane vesicles (CLMVs) through the conversion of freshly reassembled leukocyte membrane vesicles (LMVs), including membrane lipids and membrane-bound proteins onto the surface of layer-by-layer assembled polymeric multilayer microcapsules. The leukocyte membrane coating was verified by using electron microscopy, a quar...

متن کامل

Reflection on Graduation

The graduation started from the seismic studio of architecture engineering and designing a earthquake proof architecture. The context of the design in located in the historical garden of Uithuizen in Groningen, which is a potential seismic area. The research is based on the three different areas in seismic principles, biomimetic structure and climate. The final design is based on responding to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 107 28  شماره 

صفحات  -

تاریخ انتشار 2010